资源类型

期刊论文 278

会议视频 2

年份

2023 4

2022 13

2021 17

2020 9

2019 17

2018 12

2017 10

2016 10

2015 15

2014 8

2013 10

2012 13

2011 15

2010 25

2009 26

2008 23

2007 16

2006 5

2005 5

2004 2

展开 ︾

关键词

高压 3

加压浸出 2

压力容器技术 2

圆柱 2

工程水压爆破 2

泥水盾构 2

裂缝 2

COVID-19 1

DX桩 1

S 特性 1

S型钢丝研制 1

X射线成像 1

k-ε模型 1

“∞”形 1

三向受力状态 1

三维有限元 1

下地幔 1

下沉 1

不均匀性 1

展开 ︾

检索范围:

排序: 展示方式:

An investigation into the heat transfer characteristics of spiral wall with internal rib in a supercriticalsliding-pressure operation once-through boiler

TANG Renhu, YIN Fei, WANG Haijun, CHEN Tingkuan

《能源前沿(英文)》 2007年 第1卷 第3期   页码 300-304 doi: 10.1007/s11708-007-0043-5

摘要: Within the pressure range of 9–28 MPa, mass velocity range of 600–1 200 kg/(m · s), and heat flux range of 200–500 kW/m, experiments were performed to investigate the heat transfer to water in the inclined upward internally ribbed tube with an inclined angle of 19.5 degrees, a maximum outer diameter of 38.1 mm, and a thickness of 7.5 mm. Based on the experiments, it was found that heat transfer enhancement of the internally ribbed tube could postpone departure from nucleate boiling at the sub-critical pressure. However, the heat transfer enhancement decreased near the critical pressure. At supercritical pressure, the temperature difference between the wall and the fluid increased near the pseudo-critical temperature, but the increase of wall temperature was less than that of departure from nucleate boiling at sub-critical pressure. When pressure is closer to the critical pressure, the temperature difference between the wall and the fluid increased greatly near the pseudo-critical temperature. Heat transfer to supercritical water in the inclined upward internally ribbed tube was enhanced or deteriorated near the pseudo-critical temperature with the variety of ratio between the mass velocity and the heat flux. Because the rotational flow of the internal groove reduced the effect of natural convection, the internal wall temperature of internally ribbed tube uniformly distributed along the circumference. The maximum internal wall temperature difference of the tube along the circumference was only 10 degrees when the fluid enthalpy exceeded 2 000 J/g. Considering the effect of acute variety of the fluid property on heat transfer, the correlation of heat transfer coefficient on the top of the internally ribbed tube was provided.

关键词: m ·     diameter     critical pressure     sub-critical pressure     maximum    

Unified solution of limit loads of thick wall cylinder subject to external pressure considering strain

CHEN Changfu, XIAO Shujun, YANG Yu

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 329-333 doi: 10.1007/s11709-007-0043-x

摘要: Based on the unified strength theory [1], a unified strength criterion for strain softening materials, such as concrete or rock, was derived, and the elastic and plastic limit loads of a thick-walled cylinder made of these materials subject to external pressure were also given. In addition, the influence of some factors on the limit loads of such cylinders as the ratio of the external radius to internal radius,/, the coefficient , which reflects the effect of medium principal stress and the normal stress of the relevant surface on the material destroy degree, the ratio of tensile strength to compressed strength of the material, , and the damage variable

确定厚壁圆筒初始屈服压力的一种实验方法

张于贤,廖振方,王红,裴江红

《中国工程科学》 2005年 第7卷 第11期   页码 72-75

摘要:

基于厚壁圆筒的弹性失效准则所确定的圆筒的初始屈服压力与材料的屈服极限的关系,设计了一种测定厚壁圆筒初始屈服压力的实验方法,并测得了一组实验数据。通过对该实验数据的分析得到了圆筒的初始屈服压力。该实验值与理论值误差较小,表明了该实验方法具有较好的可靠性。

关键词: 厚壁圆筒     失效     初始屈服压力    

逆压梯度下近壁湍流的喷射和扫掠

张强,陆利蓬

《中国工程科学》 2003年 第5卷 第11期   页码 47-50

摘要:

采用Fourier谱展开和紧致有限差分格式,选用两组共振三波为相干结构的初值,计算了其在零压和逆压梯度作用下的演化。对演化后期流场的2,4象限的运动进行了详细的分析。结果发现,在逆压梯度下,扫掠对雷诺应力的贡献要强于喷射。无论是在零压梯度还是逆压梯度下,uv和u2在法向的输运主要是靠Q2和Q4这两种运动来完成的。零压梯度下喷射部分对输运的贡献大于扫掠的部分。而在逆压梯度下喷射部分对输运的贡献明显减少,扫掠的作用要强于喷射。

关键词: 相干结构     湍流边界层     逆压梯度     直接数值模拟    

Rheological behavior’s effect on the work performance of oil film

Zhaomiao LIU, Qiuying JIN, Chengyin ZHANG, Feng SHEN

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 254-262 doi: 10.1007/s11465-011-0129-y

摘要:

A 3D model of hydrostatic turntable’s oil chamber is established to investigate the lubricants performance with different rheological properties by using FLUENT software and the finite volume method. Newtonian oil and non-Newtonian oil’s performance under varied speeds are compared on the large size hydrostatic turntable system considering the temperature-viscosity relationship and pressure-viscosity relationship. The results show that the property of non-Newtonian fluid viscosity influenced by shear rate largely affects the lubricants performance for most oil added polymer additives. Lubricants cannot simply be regarded as Newtonian fluid. The shear thickening non-Newtonian fluid has a better work property. The results are important to design a large size and high-speed hydrostatic support system, choose lubricant oils, and investigate oil film’s work properties.

关键词: non-Newtonian fluid     rotation speed     pressure on wall     viscosity    

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

《结构与土木工程前沿(英文)》 2016年 第10卷 第4期   页码 445-455 doi: 10.1007/s11709-016-0339-9

摘要: The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforcement by using FRP composite materials have been particularly developed in the recent years. This type of strengthening seems promising for the seismic reinforcement of buildings. Among of the components of structures that could affect the stability of the structure in case of an earthquake is the reinforced concrete walls, which require in many cases a strengthening, especially in case where the diagonal cracks can be developed. The intent of this paper is to present a numerical simulation of squat reinforced concrete wall strengthened by FRP composite material (carbon fiber epoxy). The intent of this study is to perform finite element model to investigate the effects of such reinforcement in the squat reinforced concrete walls. Taking advantage of a commercial finite element package ABAQUS code, three-dimensional numerical simulations were performed, addressing the parameters associated with the squat reinforced concrete walls. An elasto-plastic damage model material is used for concrete, for steel, an elastic-plastic behavior is adopted, and the FRP composite is considered unidirectional and orthotropic. The obtained results in terms of displacements, stresses, damage illustrate clearly the importance of this strengthening strategy.

关键词: simulation     strengthening     reinforced concrete wall     squat wall     FRP composite material     damage     Abaqus    

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 376-382 doi: 10.1007/s11709-010-0086-2

摘要: Pre-tensioned high strength trusses using alloy steel bar are widely used as glass wall supporting systems because of the high degree of transparency. The breakage of glass panes in this type of system occurs occasionally, likely to be due to error in design and analysis in addition to other factors like glass impurity and stress concentration around opening in a spider system. Most design does not consider the flexibility of supports from finite stiffness of supporting steel or reinforced concrete beams. The resistance of lateral wind pressure of the system makes use of high tension force coupled with the large deflection effect, both of which are affected by many parameters not generally considered in conventional structures. In the design, one must therefore give a careful consideration on various effects, such as support settlement due to live loads and material creep, temperature change, pre-tension force, and wind pressure. It is not uncommon to see many similar glass wall systems fail in the wind load test chambers under a design wind speed. This paper presents a rigorous analysis and design of this type of structural systems used in a project in Hong Kong, China. The stability function with initial curvature is used in place of the cubic function, which is only accurate for linear analysis. The considerations and analysis techniques are believed to be of value to engineers involved in the design of the structural systems behaving nonlinearly.

关键词: tension system     glass wall     nonlinear analysis     pre-tensioning     second-order analysis    

Diaphragm wall-soil-cap interaction in rectangular-closed- diaphragm-wall bridge foundations

Hua WEN, Qiangong CHENG, Fanchao MENG, Xiaodong CHEN

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 93-100 doi: 10.1007/s11709-009-0015-4

摘要: Rectangular-closed-diaphragm-wall foundation is a new type of bridge foundation. Diaphragm wall-soil-cap interaction was studied using a model test. It was observed that the distribution of soil resistance under the cap is not homogeneous. The soil resistance in the corner under the cap is larger than that in the border; and that in the center is the smallest. The distribution of soil resistance under the cap will be more uniform, if the sectional area of soil core is enlarged within a certain range. Due to the existence of cap, there is a “weakening effect” in inner shaft resistance of the upper wall segments, and there is “enhancement effect” in the lower wall segments and in toe resistance. The load shearing percentage of soil resistance under the cap is 10%-20%. It is unreasonable to ignore the effects of the cap and the soil resistance under the cap in bearing capacity calculations.

关键词: diaphragm wall     bridge foundation     low cap     interaction    

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1128-1143 doi: 10.1007/s11709-021-0753-5

摘要: This paper provides insight into the seismic behavior of a full-scale precast reinforced concrete wall under in-plane cyclic loading combined with out-of-plane loading replicated by sand backfill to simulate the actual condition of basement walls. The tested wall exhibited flexural cracks, owing to the high aspect ratio and considerable out-of-plane movement due to lateral pressure from the backfill. The wall performed satisfactorily by exhibiting competent seismic parameters and deformation characteristics governed by its ductile response in the nonlinear phase during the test with smaller residual drift. Numerical analysis was conducted to validate experimental findings, which complied with each other. The numerical model was used to conduct parametric studies to study the effect of backfill density and aspect ratio on seismic response of the proposed precast wall system. The in-plane capacity of walls reduced, while deformation characteristics were unaffected by the increase in backfill density. An increase in aspect ratio leads to a reduction in in-plane capacity and an increase in drift. Curves between the ratio of in-plane yield capacity and design shear load of walls are proposed for the backfill density, which may be adopted to determine the in-plane yield capacity of the basement walls based on their design shear.

关键词: precast wall     basement wall     out-of-plane response     quasi-static test     sand backfill     seismic parameters    

The behavior of a rectangular closed diaphragm wall when used as a bridge foundation

Qiangong CHENG, Jiujiang WU, Zhang SONG, Hua WEN

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 398-420 doi: 10.1007/s11709-012-0175-5

摘要: The rectangular closed diaphragm (RCD) wall is a new type of bridge foundation. Compared to barrette foundation, measuring the performance of RCD walls is relatively complicated because of their incorporation of a soil core. Using the FLAC3D software, this paper investigates the deformation properties, soil resistance and skin friction of a laterally loaded RCD wall as well as the settlement, axial force and load-sharing ratio of a vertically loaded RCD wall. Special attention is given to the analysis of factors that influence the performance of the soil core. It was found that under lateral loading, the RCD wall behaves as an end-bearing friction wall during the entire loading process. The relative displacement between the wall body and the soil core primarily occurs below the rotation point, and the horizontal displacement of the soil core is greater than that of the wall body. Under vertical loading, the degree of inner skin friction around the bottom of the soil core and the proportion of the loading supported by the soil core increase with increased cross-section size. The wall depth is directly proportional to the loading supported by the outer skin friction and the tip resistance of the wall body and is inversely proportional to the loading borne by the soil core.

关键词: diaphragm wall     soil core     bridge foundation     FLAC3D     bearing behavior    

Seismic behavior of cantilever wall embedded in dry and saturated sand

Sanku KONAI, Aniruddha SENGUPTA, Kousik DEB

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 690-705 doi: 10.1007/s11709-020-0615-6

摘要: The embedded cantilever retaining walls are often required for excavation to construct the underground facilities. Significant numbers of numerical and experimental studies have been performed to understand the behavior of embedded cantilever retaining walls under static condition. However, very limited studies have been conducted on the behavior of embedded retaining walls under seismic condition. In this paper, the behavior of a small scale model embedded cantilever retaining wall in dry and saturated sand under seismic loading condition is investigated by shake table tests in the laboratory and numerically using software FLAC2D. The embedded cantilever walls are subjected to sinusoidal dynamic motions. The behaviors of the cantilever walls in terms of lateral displacement and bending moment are studied with the variation of the two important design parameters, peak amplitude of the base motions and excavation depth. The variation of the pore water pressures within the sand is also observed in the cases of saturated sand. The maximum lateral displacement of a cantilever wall due to seismic loading is below 1% of the total height of the wall in dry sand, but in case of saturated sand, it can go up to 12.75% of the total height of the wall.

关键词: embedded cantilever wall     shake table test     FLAC2D     seismic loading     saturated and dry sand    

Environmental and human health impact assessment of major interior wall decorative materials

Bingqing ZHANG, Ruochen ZENG, Xiaodong LI

《工程管理前沿(英文)》 2019年 第6卷 第3期   页码 406-415 doi: 10.1007/s42524-019-0025-4

摘要: Despite the growing interest in green products in the interior wall decorative material market, knowledge gaps exist because determining which product is more environmental and user friendly than the others is difficult. This work assesses the environmental and human health profiles of interior latex and wallpaper. Two interior latex products of different raw material ratios and one non-woven wallpaper product are considered. The environmental impact assessment follows life cycle assessment (LCA) methodology and applies Building Environmental Performance Analysis System (BEPAS). The human health impact is based on impact-pathway chain and is performed using Building Health Impact Analysis System (BHIAS). The assessment scope, associated emissions, and territorial scope of various emissions are defined to facilitate comparison study of interior wall decorative products. The impacts are classified into 15 categories belonging to three safeguard areas: ecological environment, natural resources, and human health. The impacts of categories are calculated and monetized using willingness to pay (WTP) and disability-adjusted life year (DALY) and summarized as an integrated external cost of environmental and human health impacts. Assessment results reveal that the integrated impact of interior latex is lower than that of non-woven wallpaper, and the interior latex of low quality causes low life cycle integrated impact. The most impacted categories are global warming, respiratory effects, and water consumption. Hotspots of product manufacturing are recognized to promote green product design.

关键词: life cycle assessment     human health impact     integrated assessment     interior wall decorative material     green product    

Shear wall layout optimization of tall buildings using Quantum Charged System Search

Siamak TALATAHARI, Mahdi RABIEI

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1131-1151 doi: 10.1007/s11709-020-0660-1

摘要: This paper presents a developed meta-heuristic algorithm to optimize the shear walls of tall reinforced concrete buildings. These types of walls are considered as lateral resistant elements. In this paper, Quantum Charged System Search (QCSS) algorithm is presented as a new optimization method and used to improve the convergence capability of the original Charged System Search. The cost of tall building is taken as the objective function. Since the design of the lateral system plays a major role in the performance of the tall buildings, this paper proposes a unique computational technique that, unlike available works, focuses on structural efficiency or architectural design. This technique considers both structural and architectural requirements such as minimum structural costs, torsional effects, flexural and shear resistance, lateral deflection, openings and accessibility. The robustness of the new algorithm is demonstrated by comparing the outcomes of the QCSS with those of its standard algorithm.

关键词: Quantum Charged System Search     shear wall     layout optimization     tall buildings    

Numerical modeling of current-induced scour around multi-wall foundation using large-eddy simulation

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 546-565 doi: 10.1007/s11709-023-0943-4

摘要: Scouring is one of the primary triggers of failure for bridges across rivers or seas. However, research concerning the scour mechanism of multi-wall foundations (MWFs) remains scarce, hindering the further application of MWFs. In this study, for the first time, the scouring effect caused by unidirectional flow around MWFs was examined numerically using FLOW-3D involving a large-eddy simulation. Initially, the applicability of the scouring model and input parameters was validated using a case study based on published measured data. Subsequently, the scouring effects of four MWFs with different wall arrangements and inflow angles, including the flow field analysis and scour pit and depth, were investigated thoroughly. It was found that the maximum scour depth of MWFs with an inflow angle of 0° was smaller than that of those with an inflow angle of 45°, regardless of the wall arrangement. Meanwhile, changing the inflow angle significantly affects the scour characteristics of MWFs arranged in parallel. In practical engineering, MWFs arranged in parallel are preferred considering the need for scouring resistance. However, a comparative analysis should be performed to consider comprehensively whether to adopt the form of a round wall arrangement when the inflow angle is not 0° or the inflow direction is changeable.

关键词: multi-wall foundation     current-induced scour     bridge foundation     large-eddy simulation     numerical analysis    

A new damage quantification approach for shear-wall buildings using ambient vibration data

Seung-Hun SUNG,Hyung-Jo JUNG

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 17-25 doi: 10.1007/s11709-014-0278-2

摘要: This paper presents a new approach to estimate damage severity for shear-wall buildings using diagonal terms of a modal flexibility matrix estimated from dynamic properties. This study aims to provide a fundamental concept for quantifying the damage of realistic buildings by investigating an idealized shear-wall building. Numerical studies were performed on a 5-story shear-wall building model to validate the applicability of the presented approach, using two damage patterns. With the numerical simulations, the proposed approach accurately determined the damage ratio of the specimens. Experiments were also conducted on a 5-story shear-wall building model for which the system parameters were almost the same as those in numerical simulations. The estimated damage-quantification results from the experimental validations demonstrated that the performance of the presented method for shear-wall buildings was both suitable and accurate.

关键词: damage identification     modal flexibility     damage quantification     shear-wall buildings    

标题 作者 时间 类型 操作

An investigation into the heat transfer characteristics of spiral wall with internal rib in a supercriticalsliding-pressure operation once-through boiler

TANG Renhu, YIN Fei, WANG Haijun, CHEN Tingkuan

期刊论文

Unified solution of limit loads of thick wall cylinder subject to external pressure considering strain

CHEN Changfu, XIAO Shujun, YANG Yu

期刊论文

确定厚壁圆筒初始屈服压力的一种实验方法

张于贤,廖振方,王红,裴江红

期刊论文

逆压梯度下近壁湍流的喷射和扫掠

张强,陆利蓬

期刊论文

Rheological behavior’s effect on the work performance of oil film

Zhaomiao LIU, Qiuying JIN, Chengyin ZHANG, Feng SHEN

期刊论文

Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material

Ali KEZMANE,Said BOUKAIS,Mohand Hamizi

期刊论文

Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection

Siu-Lai CHAN, Yaopeng LIU, Andy LEE,

期刊论文

Diaphragm wall-soil-cap interaction in rectangular-closed- diaphragm-wall bridge foundations

Hua WEN, Qiangong CHENG, Fanchao MENG, Xiaodong CHEN

期刊论文

Seismic response of precast reinforced concrete wall subjected to cyclic in-plane and constant out-of-plane

期刊论文

The behavior of a rectangular closed diaphragm wall when used as a bridge foundation

Qiangong CHENG, Jiujiang WU, Zhang SONG, Hua WEN

期刊论文

Seismic behavior of cantilever wall embedded in dry and saturated sand

Sanku KONAI, Aniruddha SENGUPTA, Kousik DEB

期刊论文

Environmental and human health impact assessment of major interior wall decorative materials

Bingqing ZHANG, Ruochen ZENG, Xiaodong LI

期刊论文

Shear wall layout optimization of tall buildings using Quantum Charged System Search

Siamak TALATAHARI, Mahdi RABIEI

期刊论文

Numerical modeling of current-induced scour around multi-wall foundation using large-eddy simulation

期刊论文

A new damage quantification approach for shear-wall buildings using ambient vibration data

Seung-Hun SUNG,Hyung-Jo JUNG

期刊论文